The Origin of Wavelength-Dependent Continuum Delays in AGNs – a New Model

Martin Gaskell Dept. Physics & Astronomy University of Nebraska mgaskell1@unl.edu

Wavelength-dependent delays long expected in accretion-disc models

 Shorter-wavelength radiation comes from hotter inner disc regions. Expected delays on soundcrossing or dynamical (orbital) timescales.

FIRST SURPRISE:

Not seen at first (*e.g.*, NGC 5548, Korista *et al*. 1995; NGC 4151, Edelson *et al*. 1996) Upper limits ruled out long (dynamic) timescales ⇒ light-crossing timescales.

Delays found on <u>light-crossing</u> timescales

NGC 7469 – Wanders *et al.* (1997), Collier *et al.* (1998), Kriss *et al.* (2000)

Important discovery (Sergeev *et al.* 2005) : Delay ∝ Luminosity

Current model: - "Lamp post" model (*E.g.,* Goosmann *et al.* 2006)

Collier et al. (1998):

Steady-state disc has

 $T \propto R^{-3/4}$

- Quasi-central illumination heats disc at radius, *R*, after time $\tau = R/c$.
- Re-radiation is at effective temp of disc at radius, R. Hence, by Wien's law:

$$\Rightarrow \tau = R/c \propto T^{-4/3} \propto \lambda^{4/3}$$

(Easy two parameter fit).

Collier et al. (1998)

PROBLEMS!

1. Optical-band <u>delays on surprisingly large</u> <u>timescales</u>. 5 light-day radius disk of same temperature as the sun has $L > 10^{10} L_{\odot}$.

2. L_{opt} can vary by an order of magnitude.

 \Rightarrow Irradiance would dominate over viscous energy production in the disc!!

 \Rightarrow Main energy source would not be the disc!! (*i.e.*, our old model is totally inconsistent!)

- 3. What <u>is</u> this amazing light bulb?!
- 4. Even if it <u>does</u> exist, WHY DON'T WE SEE IT?!

- 3. What <u>is</u> this amazing light bulb?!
- 4. Even if it <u>does</u> exist, WHY DON'T WE SEE IT?!

Have to have "full-cutoff" fixtures! (International Dark Sky Association approved!)

NORMALIZED DELAYS FOR 14 AGNS

... IT PREDICTS WRONG UV-OPTICAL DELAY BY ALMOST AN ORDER OF MAGNITUDE.

THE NEW MODEL

- 1. Intrinsic continuum variability has essentially <u>no</u> wavelength-dependent lag.
- 2. LAGS PRODUCED BY CONTAMINATION BY A SMALL AMOUNT OF LIGHT WITH A LARGE DELAY FROM THE DUSTY TORUS.

IR emission comes from hottest dust = dust at sublimation temperature

THE NEW MODEL

<u>A candle flame is at</u> <u>sublimation temperature</u> <u>and a candle shines in the</u> <u>optical</u>!

So hot AGN dust shines in the <u>optical</u> too!

3. Delay depends linearly on the relative strengths of the simultaneous component and delayed one.

Example: NGC 4151 – 2.2 μm lags 0.55 μm by ~ 50 days Minezaki et al. (2006)

2.2 μ m delay \Rightarrow gives inner radius of torus (= dust sublimation radius) $\propto L^{1/2}$.

Thus new model quantitatively explains Sergeev *et al.* (2005) luminosity dependence of <u>optical</u> lags.

NEW MODEL ALSO <u>QUANTITATIVELY</u> EXPLAINS <u>HYSTERESIS</u> IN COLOR-MAGNITUDE (OR COLOUR-COLOUR) DIAGRAMS

Bachev & Strigachev (2003)

Similar V fluxes; different K fluxes because of history.

Model prediction based on <u>observed</u> V-band light curve of Bachev & Strigachev (2003) and a simulated I-band light curve using an 80-day K-band lag.

Additional Results

- Torus has <u>significant albebo</u> \Rightarrow reflected light contaminates <u>all</u> λ 's. This explains:
- a) Smoothing of UV/optical light curves.
- b) <u>Polarization</u> reverberation (Gaskell, Shoji, & Goosmann 2005 - see also STOKES poster by René Goosmann).

CONCLUSIONS

- Wavelength-dependent delays in the optical are <u>not</u> real delays due to the reprocessing at ~ 10,000 Schwarzschild radii of radiation from a hypothetical, highly-energetic, invisible "mystery source."
- They are artifacts of contamination by delayed light from the much more distant torus.