A Review of Photoionization Models for The Broad Line Region of QSOs

Darrin Casebeer & Karen Leighly

University of Oklahoma, USA

October 19, 2006

Quasar Broad Lines

Why Study Quasar Broad Lines?

- Strong optical and UV emission lines
- Reflect the quasar central engine, its evolution, its environment.
 - Eigenvector 1
 - Spectral Energy Distribution
 - Probe of chemical evolution

Outline

- Early photoionization models => standard model
 - Radial stratification reverberation mapping
 - Ionization stratification HIL & LIL
- 3 More Recent Advances
 - Optically Thin Gas
 - Spectral Energy Distribution
 - Locally Optimally Emitting Cloud Model
 - Metallicity
 - Turbulence

Outline

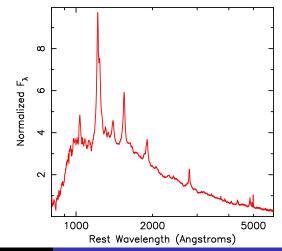
- 2 Early photoionization models => standard model
 - Radial stratification reverberation mapping
 - Ionization stratification HIL & LIL
 - More Recent Advances
 - Optically Thin Gas
 - Spectral Energy Distribution
 - Locally Optimally Emitting Cloud Model
 - Metallicity
 - Turbulence

Outline

- 2 Early photoionization models => standard model
 - Radial stratification reverberation mapping
 - Ionization stratification HIL & LIL
- 3 More Recent Advances
 - Optically Thin Gas
 - Spectral Energy Distribution
 - Locally Optimally Emitting Cloud Model
 - Metallicity
 - Turbulence

Outline

- 2 Early photoionization models => standard model
 - Radial stratification reverberation mapping
 - Ionization stratification HIL & LIL
- 3 More Recent Advances
 - Optically Thin Gas
 - Spectral Energy Distribution
 - Locally Optimally Emitting Cloud Model
 - Metallicity
 - Turbulence


Outline

Introduction

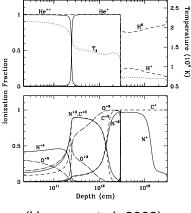
- Early photoionization models => standard model
 - Radial stratification reverberation mapping
 - Ionization stratification HIL & LIL
- 3 More Recent Advances
 - Optically Thin Gas
 - Spectral Energy Distribution
 - Locally Optimally Emitting Cloud Model
 - Metallicity
 - Turbulence

AGN Emission Lines

- observed primarily in the optical and UV
- Doppler broadened by motion in the gravitational field of the black hole
- Powered by photoionization
- A broad range of widths and ionizations are observed

Darrin Casebeer & Karen Leighly

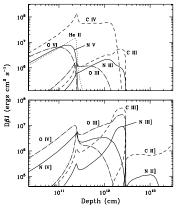
Broad Line Region


Outline

Introduction

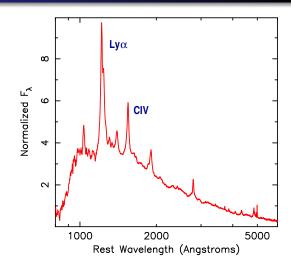
Early photoionization models => standard model More Recent Advances Summary

Photoionization Equilibrium


- Photons with energy greater than 13.6 eV will ionize hydrogen
- Photons ionize atoms according to their ionization potential
- Ions recombine with rates dependent on density
- Result depends on ionization parameter: U= \u03c6/n_H c

(Hamann et al. 2002)

Thermal Equilibrium


- Photoelectrons heat the gas
- Cooling by radiative recombination => H, He
- Cooling by collisional excitation of e.g., C⁺3

(Hamann et al. 2002)

AGN Emission Lines

Under normal circumstances. recombination lines Lyalpha and CIV (and other lines from lithium-like ions) are expected to be strong.

Darrin Casebeer & Karen Leighly

- Created/maintained by Gary Ferland.
- Input continuum properties: ionizing photon flux, spectral energy distribution.
- Input gas properties: density, thickness.
- Output: predicted emission-line fluxes.
- Compare with observed emission-line fluxes.

Radial stratification - reverberation mapping Ionization stratification - HIL & LIL

Outline

Introduction

Early photoionization models => standard model

- Radial stratification reverberation mapping
- Ionization stratification HIL & LIL
- 3 More Recent Advances
 - Optically Thin Gas
 - Spectral Energy Distribution
 - Locally Optimally Emitting Cloud Model
 - Metallicity
 - Turbulence

Radial stratification - reverberation mapping Ionization stratification - HIL & LIL

Early Photoionization Models

- Early photoionization models based on models applied to nebulae in our Galaxy
- Poor signal-to-noise ratios and poor resolution hampered early models.
- Important developments:
 - separation of NLR and BLR
 - discovery of the partially-ionized zone which required multi-level hydrogen atoms
 - Able to explain low $Ly\alpha/H\beta$ due to large optical depth

Radial stratification - reverberation mapping Ionization stratification - HIL & LIL

The Standard Model

- One zone consistency of line profile
- Ionization parameter −2.8 ≤log(U)≤ −1.5 from CIV, CIII] and Lyα
- Densities were constrained to be less than $10^{10} \, \mathrm{cm}^{-3}$
- Shape of the ionizing continuum based on extrapolation of observed continuum, and Hell.
- The covering fraction 10% based on observed eqw of Lylpha
- The column density $10^{23}\,{\rm cm}^{-2}$ based on truncating CII]/Ly α

Radial stratification - reverberation mapping Ionization stratification - HIL & LIL

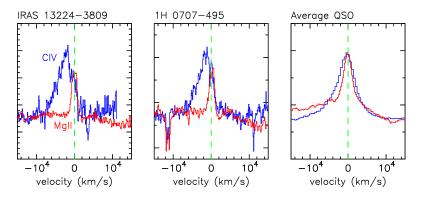
Reverberation Mapping

- First large IUE and ground-based results mid 1980s (e.g. Peterson 1988)
- Short time lags for high-ionization lines ==> 10x smaller radius
- Emission lines could see fainter continuum than direct observer, for example a flattened distribution
- Or U is unchanged requiring a much higher density $\propto 10^{11} cm^{-3}$

Radial stratification - reverberation mapping lonization stratification - HIL & LIL

Reverberation Mapping

- What was the effect on photoionization models of the BLR?
 - Density too high for CIII]
- Rees, Netzer & Ferland 1989: emission of high density clouds
 - Rule out high density don't see (free-free, Balmer, Paschen)
- Ferland et al. 1992: stratification
 - Highest densities only required for high ionization lines

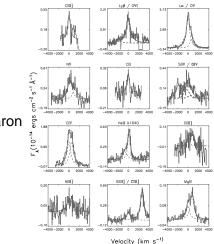

Radial stratification - reverberation mapping Ionization stratification - HIL & LIL

HIL and LIL

- In 1980's S. Collin & collaborators pointed out that simultaneously producing high- and low-ionization lines in the same cloud is difficult.
- Low-ionization lines require high covering fractions
- Must be out of our line of sight
- ==> Low-ionization lines produced in accretion disk
- In addition other sources of heat may increase low-ionization line flux
- CII] mainly emitted in partially ionized zone
- High columns are therefore not ruled out

Radial stratification - reverberation mapping Ionization stratification - HIL & LIL

Observational Support



 Leighly & Moore (2004); also Gaskell 1982, Wilkes 1984, Marziani et al. 1996, Richards et al. 2002

Darrin Casebeer & Karen Leighly Broad Line Region

Radial stratification - reverberation mapping Ionization stratification - HIL & LIL

Not Always true

Casebeer, Leighly & Baron (2006)

Darrin Casebeer & Karen Leighly

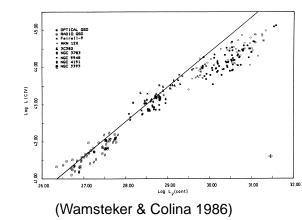
Broad Line Region

Optically Thin Gas
Spectral Energy Distribution
Locally Optimally Emitting Cloud Model
Metallicity
Turbulence

Outline

Introduction

- 2 Early photoionization models => standard model
 - Radial stratification reverberation mapping
 - Ionization stratification HIL & LIL

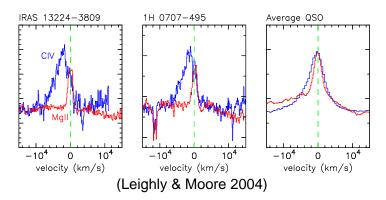

3 More Recent Advances

- Optically Thin Gas
- Spectral Energy Distribution
- Locally Optimally Emitting Cloud Model
- Metallicity
- Turbulence

Optically Thin Gas Spectral Energy Distribution Locally Optimally Emitting Cloud Model Metallicity Turbulence

Optically Thin Gas

- Is the
 - high-ionization line-emitting gas optically thin to the Lyman continuum?
- Saturation of CIV at high continuum luminosities (Wamsteker & Colina 1986)



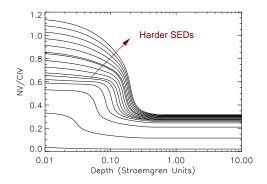
Darrin Casebeer & Karen Leighly

Broad Line Region

Optically Thin Gas Spectral Energy Distribution Locally Optimally Emitting Cloud Model Metallicity Turbulence

Optically Thin Gas

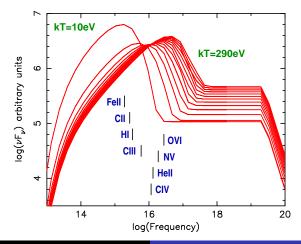
 profile studies show low-ionization lines are narrow and symmetric. (Leighly & Moore 2004; Ferland et al. 1996)


Optically Thin Gas Spectral Energy Distribution Locally Optimally Emitting Cloud Model Metallicity Turbulence

Optically Thin Gas

- Investigated in detail by Shields et al. 1995
- Can explain saturation behavior of CIV
- May also explain UV absorption lines
- May also explain X-ray warm absorber

Optically Thin Gas Spectral Energy Distribution Locally Optimally Emitting Cloud Model Metallicity Turbulence


Optically Thin Gas

line ratios can be very sensitive to optically thin gas.

Optically Thin Gas Spectral Energy Distribution Locally Optimally Emitting Cloud Model Metallicity Turbulence

Spectral Energy Distribution

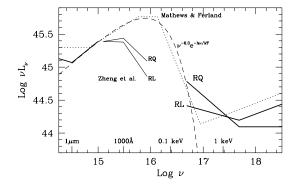
Darrin Casebeer & Karen Leighly Broad Line Region

Outline	Optically Thin Gas
Introduction	Spectral Energy Distribution
Early photoionization models => standard model	Locally Optimally Emitting Cloud Model
More Recent Advances	Metallicity
Summary	Turbulence

- Emission lines should be able to determine shape of EUV
- Krolik and Kallman (1988) did this with 3 SED
- Korista et al. investigated effect of no BBB
- Zheng et al. (1997) produced HST composite spectrum
- They found a turnover towards shorter wavelength
- Laor et al. (1997) found soft excess pointed towards UV

 Outline
 Optically Thin Gas

 Introduction
 Spectral Energy Distribution


 Early photoionization models => standard model
 Locally Optimally Emitting Cloud Model

 More Recent Advances
 Metallicity

 Summary
 Turbulence

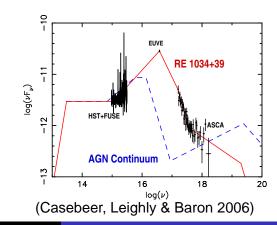
EUV Bump

- Krolik &
 Kallman
 1988 -
- Korista et al. 1996 -Hell emission

(Laor et al. 1997)

 Outline
 Optically Thin Gas

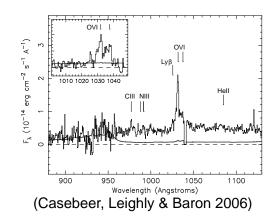
 Introduction
 Spectral Energy Distribution


 Early photoionization models => standard model
 Locally Optimally Emitting Cloud Model

 More Recent Advances
 Metallicity

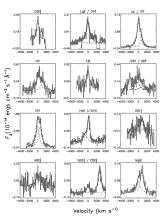
 Summary
 Turbulence

Emission Lines in RE 1034+39


- RE 1034+39 is a low-luminosity NLS1 known for its hard (X-ray dominant SED)
- Coordinated FUSE, EUVE and ASCA observations.

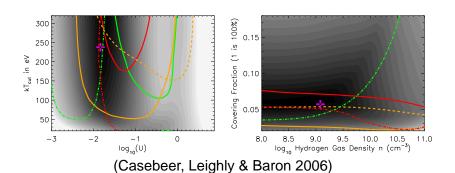
Optically Thin Gas Spectral Energy Distribution Locally Optimally Emitting Cloud Model Metallicity Turbulence

FUSE Spectra


- Strong high-ionization line emission (e.g., OVI)
- Narrow and symmetric lines
 - no wind.
- Weak low-ionization line emission

Optically Thin Gas Spectral Energy Distribution Locally Optimally Emitting Cloud Model Metallicity Turbulence

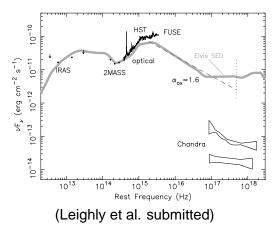
Narrow, Symmetric Emission Lines


 All the lines are narrow and symmetric - no wind is present.

(Casebeer, Leighly & Baron 2006)

Optically Thin Gas Spectral Energy Distribution Locally Optimally Emitting Cloud Model Metallicity Turbulence

Cloudy Models



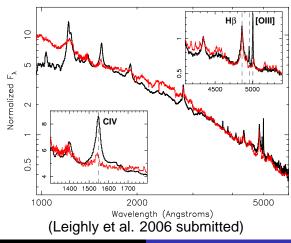
 Cloudy modeling shows that emission-line strengths and ratios are best produced by hard SED.

Outline	Optically Thin Gas
Introduction	Spectral Energy Distribution
Early photoionization models => standard model	Locally Optimally Emitting Cloud Model
More Recent Advances	Metallicity
Summary	Turbulence

PHL 1811

- Optically the second brightest quasar beyond $z = 0.1(m_B = 14.4, z = 0.192).$
- Undetected in ROSAT All Sky Survey
- Coordinated HST & Chandra observations
- Anomalously X-ray weak in 7 observations between 1990 and 2004

 Outline
 Optically Thin Gas


 Introduction
 Spectral Energy Distribution

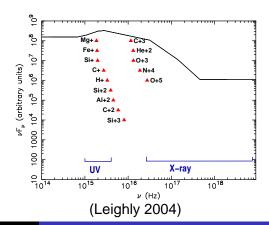
 Early photoionization models => standard model
 Locally Optimally Emitting Cloud Model

 More Recent Advances
 Summary

 Summary
 Turbulence

PHL 1811 vs Francis Composite

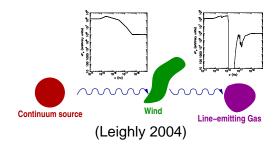
Darrin Casebeer & Karen Leighly Bro


Broad Line Region

Outline **Optically Thin Gas** Introduction Spectral Energy Distribution Early photoionization models => standard model More Recent Advances Metallicity Turbulence Summary

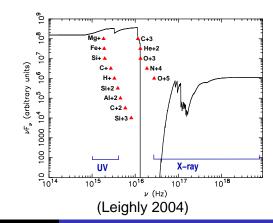
Locally Optimally Emitting Cloud Model

Wind-Filtered Continua


- Objects with blue-shifted high-ionization lines have strong low-ionization lines (e.g., Sill, Fell).
- Implies emission very far from the black hole. unless....

Optically Thin Gas Spectral Energy Distribution Locally Optimally Emitting Cloud Model Metallicity Turbulence

Wind-Filtered Continua

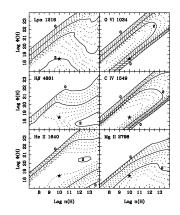

 Filtering continuum through the wind softens it, leading to strong low-ionization lines.

Optically Thin Gas Spectral Energy Distribution Locally Optimally Emitting Cloud Model Metallicity Turbulence

Wind-Filtered Continua

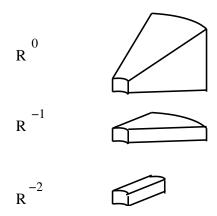
 Filtering continuum through the wind softens it, leading to strong low-ionization lines.

Optically Thin Gas
Spectral Energy Distribution
Locally Optimally Emitting Cloud Model
Metallicity
Turbulence


LOC model: Motivation

- Emission lines in the same object may have different profiles
- Emission lines response to changes in continuum luminosity have different time lags

Optically Thin Gas Spectral Energy Distribution Locally Optimally Emitting Cloud Model Metallicity Turbulence


Background of Locally Optimally Emitting Cloud Models

 First introduced by Baldwin (1995)

Optically Thin Gas Spectral Energy Distribution Locally Optimally Emitting Cloud Model Metallicity Turbulence

Different Radial Distributions

Locally Optimally Emitting Cloud Models Baldwin (1995)

TABLE 1

OBSERVED AND PREDICTED LINE INTENSITIES

Emission Line (1)	Observed Intensity ^a (2)	Maximum Reprocessing (3)	LOC Integration ^b (4)
Ο VI λ1034+Lyβλ1026	0.1–0.3	0.28	0.16
Ly $\alpha \lambda 1216$	1.00	1.00	1.00
N V λ1240	0.1-0.3	0.06	0.04
Si IV λ1397+O IV] λ1402	0.08-0.24	0.08	0.06
C IV λ1549	0.4-0.6	0.54	0.57
He II λ 1640 + O III] λ 1666	0.09-0.2	0.11	0.14
C III]+Si III]+AI III λ 1900	0.15-0.3	0.28	0.12
Mg II λ2798	0.15-0.3	0.38	0.34
Ηβ λ4861	0.07-0.2	0.08	0.09

(Baldwin et al. 1995)

^aIntensity relative to Ly α λ 1216, combining data from Baldwin, Wampler, & Gaskell (1989), Boyle (1990), Cristiani & Vio (1990), Francis et al. (1991), Laor et al. 1995, Netzer et al. (1995), and Weymann et al. (1991).

^bCo-addition of emission from clouds as described in the text

Darrin Casebeer & Karen Leighly Broad Line Region

Outline	Optically Thin Gas
Introduction	Spectral Energy Distribution
Early photoionization models => standard model	Locally Optimally Emitting Cloud Model
More Recent Advances	Metallicity
Summary	Turbulence

RE1034 and PHL1811

TABLE 1

OBSERVED AND PREDICTED LINE INTENSITIES

Emission Line (1)	LOC Integration (2)	RE1034 LOC (3)	RE1034 measured (4)	PHL1811 measured (5)
Ο VI λ1034+Lyβλ1026	0.16	0.52	0.51	а
Ly α λ 1216	1.00	1.00	1.00	1.00
N V λ1240	0.04	0.18	0.18	1.4
C IV λ1549	0.57	1.11	0.54	0.77
He II λ 1640 + O III] λ 1666	0.14	0.25	0.11	0.12
Mg II λ2798	0.34	0.47	0.11	0.18

a not measured in PHL1811

Outline	Optically Thin Gas
Introduction	Spectral Energy Distribution
Early photoionization models => standard model	Locally Optimally Emitting Cloud Model
More Recent Advances	Metallicity
Summary	Turbulence

RE1034 and PHL1811

TABLE 1

OBSERVED AND PREDICTED LINE INTENSITIES

Emission Line (1)	LOC Integration (2)	RE1034 LOC (3)	RE1034 measured (4)	PHL1811 measured (5)
Ο VI λ1034+Lyβλ1026	0.16	0.52	0.51	а
Ly α λ 1216	1.00	1.00	1.00	1.00
N V λ1240	0.04	0.18	0.18	1.4
C IV λ1549	0.57	1.11	0.54	0.77
He II λ 1640 + O III] λ 1666	0.14	0.25	0.11	0.12
Mg II λ2798	0.34	0.47	0.11	0.18

a not measured in PHL1811

Outline	Optically Thin Gas
Introduction	Spectral Energy Distribution
Early photoionization models => standard model	Locally Optimally Emitting Cloud Model
More Recent Advances	Metallicity
Summary	Turbulence

RE1034 and PHL1811

TABLE 1

OBSERVED AND PREDICTED LINE INTENSITIES

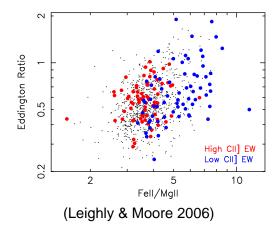
Emission Line (1)	LOC Integration (2)	RE1034 LOC (3)	RE1034 measured (4)	PHL1811 measured (5)
Ο VI λ1034+Lyβλ1026	0.16	0.52	0.51	а
$Ly\alpha \lambda 1216$	1.00	1.00	1.00	1.00
N V λ1240	0.04	0.18	0.18	1.4
C IV λ1549	0.57	1.11	0.54	0.77
He II λ 1640 + O III] λ 1666	0.14	0.25	0.11	0.12
Mg II λ2798	0.34	0.47	0.11	0.18

a not measured in PHL1811

Outline	Optically Thin Gas
Introduction	Spectral Energy Distribution
Early photoionization models => standard model	Locally Optimally Emitting Cloud Model
More Recent Advances	Metallicity
Summary	Turbulence

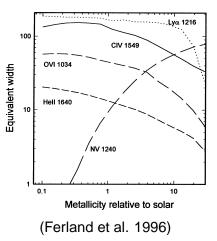
Metallicity in Quasars

- Quasars can be seen a long distance; their emission lines are amenable to chemical evolution studies
- Nitrogen is a sensitive probe of metallicity $[N/H] \propto [O/H]^2 \propto [Z/Z_{\odot}]^2$
- *Fell/Mgll* may be a probe of the onset of the first star formation in the universe.

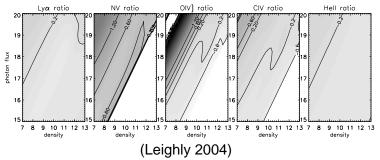

Optically Thin Gas
Spectral Energy Distribution
Locally Optimally Emitting Cloud Model
Metallicity
Turbulence

Metallicity Studies

- Hamann et al. (2002)
- Best line ratios are close together in ionization potential and excitation potential, and critical density
- Should not be important coolants
- ==> best is [NIII]/[OIII]
- Quasar metallicity solar or higher


Fell/Mgll

- Fell/Mgll doesn't change appreciably to z=6 (Dietrich et al. 2003)
- But Fell is an important coolant
- Evidence that Fell has multiple excitation mechanisms



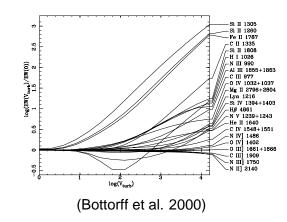
Metallicity and Cooling

 The abundances will change the cooling and structure in the gas (Ferland et al. 1996; Snedden & Gaskell 1999; Leighly 2004).

Metallicity and Cooling

- Leighly (2004) found this cooling allowed her to explain weak CIV
- Major coolents hardly change, minor coolents OIV] increase

Outline	Optically Thin Gas
Introduction	Spectral Energy Distribution
Early photoionization models => standard model	Locally Optimally Emitting Cloud Model
More Recent Advances	Metallicity
Summary	Turbulence


Microturbulance

- Microturbulence may be present and may be responsible for smooth line profiles
- Can strongly affect line fluxes and ratios

Outline	Optically Thin Gas
Introduction	Spectral Energy Distribution
Early photoionization models => standard model	Locally Optimally Emitting Cloud Model
More Recent Advances	Metallicity
Summary	Turbulence

Microturbulence

- Lines escape more easily due to reduced opacity
- FUV lines predominantly excited by continuum pumping strongly affected
- Semiforbidden lines influenced the least
- More effective on lines that are not important coolants

Outline

Introduction

- 2 Early photoionization models => standard model
 - Radial stratification reverberation mapping
 - Ionization stratification HIL & LIL
- 3 More Recent Advances
 - Optically Thin Gas
 - Spectral Energy Distribution
 - Locally Optimally Emitting Cloud Model
 - Metallicity
 - Turbulence

- Cloudy is the current state of the art
- In some cases BLR clouds are optically thin
- The spectral energy distribution is important
- LOC models can replicate some observations
- More may need to be done for metallicity at high Z
- Turbulence may be important for the BLR