AGN Research with Future
Interferometric Arrays

Andreas Quirrenbach

Landessternwarte Heidelberg
The VLT Interferometer
Optical / Infrared Interferometry

- Access to milliarcsecond-scale phenomena
- Perform interferometric spectroscopy
- Sensitivity sufficient for a few bright AGN
- Important information on dust distribution from observations in 10µm band (talk Walter Jaffe)
- Small number of telescopes ⇒ parametric model fits to visibilities, no images
- Sensitivity insufficient for larger samples
- Resolution insufficient for details / more distant objects
Desirable Capabilities of a Next-Generation Interferometer

- Address wide range of scientific topics ⇒ flexibility
- Observe faint objects ⇒ high sensitivity and dynamic range
- Complex objects / limited prior knowledge ⇒ imaging capability
- Access “famous” archetypical and rare objects ⇒ good sky coverage
- Observe time-variable phenomena ⇒ good snap-shot capability
What’s Next?
What’s Next?
Think BIG!
The ELSA Concept – a Strawman Interferometric Facility

- Number of telescopes: 27
- Telescope diameter: 8 m
- Maximum baseline: 10 km
- Wavelength range: 500 nm … 20 µm (?)
- Beam transport: Single-mode fiber bundles
- Beam combination: Michelson
- Sky coverage at 600 nm: ≥ 10%
- Cost: ≈ 400 M€
Linear Resolution of ELSA in the Local Universe

![Graph showing linear resolution vs. distance in parsecs with markers for various astronomical objects and distances in light-years and parsecs.](image-url)
Linear Resolution of ELSA at $\lambda = 500 \text{ nm}$

![Graph showing linear resolution vs. redshift](image)
A Y-Shaped Configuration
(15 Telescopes)
AGN Science with ELSA

- Black-hole mass from stellar and gas dynamics
- Reverberation *mapping* (watch line response to continuum variations in movies) \(\Rightarrow\) physics of BLR, geometric distances
- Optical emission from milliarcsecond jets \(\Rightarrow\) jet collimation, shocks, particle acceleration, …
- Details of clumpy (?) obscuring torus \(\Rightarrow\) dust properties, unification schemes
- “Mirror(s)” in HBLR objects \(\Rightarrow\) AGN physics, unification schemes
ELSA Critical Technologies

- Telescopes
- Array co-phasing
- Beam transport
- Beam combination
- Delay compensation
ELSA Co-Phasing Concept

- Phase individual telescopes with multiple (?) LGS adaptive optics
- Off-axis fringe tracking on “bright” star
- Large aperture ⇒ good fringe tracking sensitivity ⇒ near-complete sky coverage
- Requirement: fringe tracking at $K \approx 19$
 - One of the drivers for large array elements
- Fringe-tracking chain of neighboring telescopes for bright (resolved) stars
- Fringe tracking between all telescopes for faint (unresolved) stars
Limiting Sensitivity for Fringe Tracking in the R Band

![Graph showing the relationship between Limiting Fringe Tracking Magnitude and Telescope Diameter in the R Band. The x-axis represents the Telescope Diameter in meters, ranging from 2 to 12, while the y-axis represents the Limiting Fringe Tracking Magnitude ranging from 10 to 20. The graph illustrates a trend where the magnitude increases as the diameter increases.]
Sky Coverage at NGP for Different Maximum Off-Axis Angles
ELSA Telescopes

- Need to produce twenty-seven 8m telescopes for ≈ 200 M\€
- Moveable for array reconfiguration if possible
- Small field-of-view
- No scientific instruments (acquisition and fiber-feeds only)
- Take advantage of ELT development
 - Mass production of mirror segments
 - Standardized structural elements
Projected Cost of Telescopes

- Typical scaling of telescope cost with diameter is \(\mathcal{E} \propto D^{2.7} \)
- Scaling applies at any given time (for similar maturity of technology), not to future projection
- Example: scaling holds for Keck (10m) versus CHARA (1m) telescopes
- Apply scaling to ELT (e.g., European E-ELT concept): 42m for 700 M\(\mathcal{E} \) \(\Rightarrow \) 8m for 8 M\(\mathcal{E} \)
- Proof-of-concept for ELT?
Moving Big Telescopes around …
... is Perfectly Doable!
ELSA Site

- Need flat ≈ 10 km plateau
- Good seeing \((r_0, \tau_0, \theta_0)\) important criterion
- Southern hemisphere preferred
- Requirements different from ELT criteria
- ALMA site probably (marginally) ok
What Needs to be Done?

- Currently there is no formal “Future Large Interferometer” project
- Planning is beginning now
 - Detailed science case
 - Technology development roadmap
 - Site evaluation
- Need to get into “official” facility planning
 - US: Decadal Review
 - Europe: ESO, EU, Astronet
 - Others: ??
Conclusions

- A large interferometer – such as ELSA – will open completely new windows on AGN science
- It is (almost) doable technically now, but some technology development is needed to bring cost down
- The science case needs to worked out in detail
- Planning and lobbying is needed
- International cooperation will be helpful to finance an €xtremely £arge $ynthesis Array¥
Questions to You

- What angular resolution is needed for your science?
- What limiting magnitude do you need?
- What are the imaging requirements (dynamic range, field-of-view etc.)?
- Is polarimetry needed (technically difficult)?
- Which scientific topics have I missed?
- Would you like to help?
- Please send answers to: A.Quirrenbach@lsw.uni-heidelberg.de