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Double—Peaked Balmer
Emission Lines

@ Reminiscent of disk
emission lines in
Cataclysmic Variables.

@ First observed in Broad
Line Radio Galaxies

(Arp 102B, 3C 390.3,
3C 332)

@ Later found in 20% of
7<0.4 BLRGs (Eracleous
& Halpern 2003) and 3%
of all z<0.3 AGNs in
SDSS (Strateva et al.
2003).
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Long-Term Profile Variability
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Model Independent
Characterization

@ 1st step 1s to characterize the data, without
reference to any particular model.

v What trends are most common?
v/ Common (physical) timescales?
v/ Can any existing models be excluded?

@ Current models represent simplest extensions
to a circular disk; this characterization will
suggest, and be a benchmark for, future
models.
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Characterization:
Difference Spectra

@ Construct average and “minimum’ spectra
for each object and subtract these from each
individual spectrum.

@ Minimum spectrum represents a ‘“base”
profile that 1s common to all of the spectra.

@ If variability is due to excess emission (spiral
arm, bright spot) it will show up clearly.
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What Does a Lump in the
Profile Represent?

@ Lumps cannot be bright spots that orbit in the
disk.

@ Some observations made within a few months
(similar to the dynamical timescale), and
lumps did not drift significantly.

@ Lumps are probably associated with a place in
the disk (such as a standing shock that
gradually drifts) and not a particular parcel of
gas. Fragmented Spiral Arm?




Characterization:
Profile Parameters

v Peak Velocities
v/ Blue/red peak flux

v/ Separation of
peaks and
FWHM/FWQM

v/ Velocity shift of
the profile

centroid at peaks,
HM and QM
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Comparison with Simple Models

@ FElliptical Accretion Disk

v/ Forms through perturbation by a massive
object or tidal disruption of a star.

v/ The latter inspired by the sudden appearance
of double—peaked lines in some objects.

@ One—-Armed Spiral

v/ Circular accretion disk with a one—armed
spiral emissivity pattern.

v/ Can arise in the self-gravitating outer disk or
by perturbation by a massive object.

v/ Provides way to shed angular momentum




Common Trends: Elliptical
@ Multiple lumps of emission at most times.

@ Profile parameters vary smoothly, symmetrically,
i q=1.5;'1=50°;E:1.2—8x103rg;0=600 km/s

and 1n concert. L51=007¢=12-8
e,=0.0; e,=0. ,56—1200rg
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Common Trends: Elliptical
@ Multiple lumps of emission at most times.

@ Profile parameters vary smoothly, symmetncally,
and 1n concert.
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Common Trends: Spiral
@ Multiple lumps of emission difficult to obtain

@ Variations in profile parameters more complex,
less smooth and symmetric. R R

r A=2;p=35°0= 15°;$Sp=2—8x103rg

f, (arbitrary units)
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Common Trends: Spiral
@ Multiple lumps of emission difficult to obtain

@ Variations in profile parameters more complex,

less smooth and symmetric. | W
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Variability Timescales

@ Both of these models lead to profile variability
due to precession.

@ Three objects in my study have known black
hole masses ("’4 x 107 MQ). Lewis & Eracleous 2006

v/ Spiral arm: order of magnitude longer than
dynamical timescale, up to sound crossing
time —> ~3-30 years.

v/ Elliptical disk: 100s of years!

@ Elliptical disk model can be ruled out for
many objects, and seems unlikely to be
generally applicable.




Much more has been been done
. and much more is to come!

@ See the poster by Helene Flohic!

“Interpreting the variability of double-peaked emission
lines using models for accretion disk structures”

@ Talk to Suvi Gezari, who worked on

seven other double—peaked emitters,
esp. 3C 390.3, Arp 102B, and 3C 332!

@ Watch out for papers by Suvi Gezari
and Karen Lewis!




Future Work

@ Dynamical timescale shorter than expected,
some objects should be monitored more
frequently to determine whether variability
takes place on this timescale.

@ Test fragmented spiral arm model (with
observations and with simulations)

@ Many models to test! This model-independent
characterization offers a way to quickly assess
the viability of any model.

@ Determine more black hole masses via M—O




Conclusions

@ Profile variability is very common and
comprises lumps of excess emission that
change in amplitude, position etc.

@ Modulation of peak flux ratio is most obvious
variation, but other properties vary as well.

@ Elliptical disk model not generally applicable
(wrong timescale and variability patterns)

@ A fragmented spiral arm might produce better
agreement with the observations.
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Formation of Double-Peaked Lines

@ Line forms at distances of a
few 102 — a few 103 '

Is = Gl\/IBH/C2

@ General and special
relativistic effects distort the

line profile.

v/ Doppler boosting of the
blue peak

v/ redshifting of entire line
profile

v/ red wing becomes /
diStOI‘ted ;5000 0 5000  10°

Velocity (km/s)
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Broad Line Flux
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Why are These Lines so Rare?

. . Accretion Dis _//{_—-———-—-—‘_
@ Wlnd effeCtlvely maSkS ‘_,i CoromD l‘L// Source of Broad =

——

th e di S k . . *’ 1 "’ / / Emission Lines ____

. Thin Accretion Disk
@ Do double—peaked - \\\ S
lek\ﬂ\ ind

emitters have a P ——
“stripped down” disk?

@ I need to remake this
slide! Will show some
UV stuff on next slide. Sowre of Dovblepecked

Balmer Emission Lines

@ I will leave this for end et
if I have time.
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Why is it Important to Study
Double-peaked Emitters?

@ Disk probably contributes to broad lines in most
AGNs, but it’s not obvious.

@ Studying extreme objects 1s a good way to test
universal theories of AGN broad line regions.

@ Many AGNs exhibit profile variability on similar
timescales = similar causes?

@ Rare systems in which we can observe AGN
disk directly = chance to study disk physics.
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Telluric Correction
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Physical Timescales
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There are several relevant physical timescales to consider

Dynamical: t4y, ~ 6 Mg Eg/ * months

Thermal: T, ~ T4,/

Sound Crossing: T, ~ 70 Mg &3 TS_I/ : years

Mg = M,/10° M_; €5 = £/103 (€ is the radius in units of GM, /c?); o ~ 0.1 (the viscosity
parameter); and 75 = T /10°K. In constrast the light crossing time is T; ~ 63 Mg days.

Mass perturbations orbit over Tgyy ; thermal instabilities dissipate
over T ; and density perturbations will precess on time scales of
a few Tdynto a few Ts.



